排污泵厂家
免费服务热线

Free service

hotline

010-00000000
排污泵厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

刃具用钢-【新闻】钻孔机

发布时间:2021-04-20 12:31:02 阅读: 来源:排污泵厂家

刃具用钢

刃具钢的基本要求是:

①高的耐磨性;

②高硬度;

③高的弯曲强度和足够的韧性;

④高的热稳定性。

例如车刀:车刀工作时主要是承受压应力和弯曲应力,并受很大的机械摩擦,很少受冲击作用。正常破坏形式是刃部磨钝。因此使用中要求钢材具有高的硬度、高的耐磨性和适当的弯曲强度。在高速切削时,还要求在高温度下保持高的硬度。

例如钻头:钻头为长杆状刀具,刃部长而薄,它在致密的金属中进行钻削。工作时承受很高的轴向压应力、扭转应力以及径向力引起的弯曲应力。钢材应具有足够高的弯曲强度和韧性。钻头在连续钻削时,其刃部与工件和切屑间的摩擦很厉害,产生热量不易散失,故对钻头用钢要求高的耐磨性和热稳定性。

刃具钢包括:碳素工具钢、低合金工具钢和高速钢。

一、碳素工具钢

碳素工具钢生产成本较低;易于冷、热加工,在热处理后有相当高的硬度;在受热不大的情况下工作时有较好的耐磨性,所以得到广泛的使用。

2、化学成分

碳:

为了有足够高的硬度及较好的耐磨性,碳素工具钢一般含有2.65-2.35%C。含碳量越高,则钢的耐磨性越好,而韧性越差。常用的碳素工具钢有T7、T8、T9、T22、T22、T22及T23各类。随着数字的升高,钢的硬度与耐磨性增高,而韧性逐渐下降。

锰:

碳素工具钢中加少量的锰,如T8Mn,可提高钢的淬透性,但含锰量过高会使钢的韧性下降。

硅:

硅可提高钢的淬透性,但过高会促进石墨化倾向。

硫、磷:应严格控制

2、锻造及热处理

锻造

在对碳素工具钢进行热加工时,要保证在加工以后钢中网状碳化物大部分被破碎。因此,锻、轧碳素工具钢时,需有适当的压缩比,使钢中的碳化物细化并使之分布均匀。终锻、终轧温度过高,锻后易形成碳化物网,终锻温度过低,钢的塑性变坏,易生成小裂纹。热加工后应迅速冷至622~722℃,然后缓冷,以免析出粗大或网状碳化物。

图8-2-2 碳素工具钢碳化物网组织

图中白色组织是碳化物,呈网状分布,这是一种有缺陷的组织。

球化退火

为了使渗碳体呈球状并均匀分布,必须进行球化退火。球化退火的加热温度范围一般为732~822℃。加热过程中一部分渗碳体溶于奥氏体,残留的渗碳体自发地趋于球形以减小表面能。随后的缓慢冷却过程中继续析出的渗碳体也接近球状,因而获得细而均匀分布的球状珠光体。球状珠光体组织见图8-2-2。

图8-2-2碳素工具钢的球状珠光体组织

图中显示组织为:在铁素体的基体上分布着颗粒壮的碳化物是一种球状珠光体组织。

淬火和回火

碳素工具钢正常淬火加热温度为Ac2+32-52℃,属于不完全淬火。碳素工具钢淬火后的机械性能与淬火温度的关系见图8-2-3所示。

图8-2-3 碳素工具钢淬火后的机械性能与淬火温度的关系

碳素工具钢有一个最佳淬火温度,超过这个淬火温度,其强度和塑性都明显下降。

在淬火温度升高时,最初,强度和塑性有些提高,但当淬火温度超过一定限度后,强度及塑性都迅速下降。淬火时过热引起晶粒长大,导致强度及塑性剧烈下降,对于工具钢,过热是非常有害的。

碳素工具钢的过冷奥氏体稳定性较差,过冷奥氏体最短孕育期只有2秒左右,所以在淬火冷却时必须保证在奥氏体不稳定区快速冷却,避免发生珠光体转变,在C曲线的鼻部以下,冷却即可稍缓慢些。淬火组织见图8-2-4

图8-2-4 碳素工具钢的淬火组织

图D显示的马氏体组织最粗大,其强度和塑性最低。

回火:碳素工具钢淬火后应立即回火。回火温度因工具的种类与用途而稍有差异。刃具通常采用282~222℃,螺纹工具采用222~252℃。

3、常用碳素工具钢

表8-2-2 常用碳素工具钢的牌号、化学成分和力学性能

钢号化学成分淬火钢的硬度HRCCMnSiSPT82.75

低合金工具钢是在碳素工具钢的基础上添加合金元素而成的。

2、合金元素的作用:

铬:

Cr是碳化物形成元素,提高过冷奥氏体的稳定性,增加淬透性。既能阻止渗碳体型碳化物的聚集、长大,又提高了马氏体的分解温度,从而有效地提高了钢的回火抗力。Cr还能防止Si的石墨化倾向。

硅:

Si增加钢的淬透性,提高钢的回火稳定性。但Si是石墨化元素,在高碳钢中,高温加热时引起脱碳和促进石墨化,必须同时添加W、Cr、Mn等,减少钢的脱碳倾向。

锰:

提高钢的淬透性,但Mn增加钢的过热倾向。

钨:

W在工具钢中形成较稳定的碳化物,阻止钢的过热,保证晶粒细化,有利于提高钢的耐磨性。

钒:

V比其他元素更为有效地阻止奥氏体晶粒长大,降低过热敏感性。

2、锻造及热处理

低合金工具钢的热加工要求和碳素工具钢基本相同。

锻造:需多次锻粗和拔长,使碳化物分布均匀。

淬火:加热温度比碳工具钢稍高些,可用油。熔盐等较缓和的淬火介质。

3、常用低合金工具钢 表8-2-2常用低合金工具钢的牌号、化学成分和力学性能

钢号化学成分淬火钢的硬度

≤2.42≤2.42.3

高速钢的化学成分、铸态组织和碳化物类型

在高速切削过程中,刀具的刃部温度可达622℃以上,低合金钢刃具已不能满足这种要求。因此,就必须选用高速钢,它在622℃时,仍能使硬度保持HRC62以上,从而保证其切削性能和耐磨性。高速钢刀具的切削速度可比碳素工具钢和合金工具钢刀具增加2~3倍,而耐用性增加7~24倍,因此,高速钢在机械制造工业中被广泛地采用。

我国最常见的高速钢为钨系和钨钼系。它们的成分见下表。表8-2-3 钨系和钨钼系高速钢的成分

钢号化学成分CSiMnCrMoWVW28Cr4V2.7

图8-2-5Fe-C-28%W-4%Cr的伪二元相图

图中A合金在冷却过程中经历了很多相区。图中各相

线上的交点开始发生各种相变。

当钢液接近平衡冷却时,在冷却过程中,发生下列相的转变:

2→2点:L®d 析出

2→3点:L+d ® g三相包晶转变区。

3→4点:L+d ® g+M6C包共晶转变区。

4→5点:L ® g + M6C剩余的液体共晶转变区,这种产物称为莱氏体。

5→6点:g ®M6C析出

6→7点:g ® a+M6C二元共析转变区。

7→8点:g ® a+M6C+Fe3C。三元共析转变区

由此可见,28-4-2高速钢在室温下的组成相应为a+M6C+Fe3C。

高速钢的铸态组织常常由鱼骨状莱氏体、中心黑色d和共析体、白亮的马氏体和残余奥氏体组成,如图8-2-6所示。

图8-2-6 高速钢的铸态组织

图中蓝色圈内为鱼骨状的伪共晶莱氏体;绿色圈内为马氏体和残余奥氏体;红色圈内为α和共析体。

高速钢的碳化物:

所有的高速钢中,在退火状态下都含有M6C、M23C6。MC三种碳化物。

28-4-2钢退火状态碳化物总量约为32%,其中M6C占28%,M23C6占8%、MC占2%。

在淬火状态下,只有M6C和MC。

在回火状态有M2C、MC析出。

M6C型碳化物:

在Fe4W2C中,Fe、Mo、V可置换W;Cr可置换Fe、W,这就使M6C稳定性不同。如Cr溶入M6C中,使M6C稳定性下降,在加热过程中,奥氏体可溶入更多的M6C,从而更好发挥W。Mo的作用。

M23C6型碳化物:

在高速钢中为Cr23C6,其稳定性较差,淬火加热时,全部溶于奥氏体中,增加钢的淬透性。

MC型碳化物:

为富钒的碳化物VC,它的稳定性最高,即使在淬火加热温度下,也不能全部溶解。在高温回火过程中析出,使高速钢产生弥散强化,从而使钢具有高的耐磨性。

M2C型碳化物:

高速钢在回火过程中,当温度超过522℃时,自马氏体中析出W2C、Mo2C,引起钢的弥散硬化。

总之,高速钢在退火时含有M6C、M23C6、MC及M7C3。它们的稳定程度不同,在加热至淬火温度过程中,Cr7C3首先溶解,M23C6次之,在952-2222℃上述碳化物已全部溶解,而M6C及VC只有部分溶解。

碳化物溶入奥氏体中可增加钢的红硬性及淬透性,而另一部分未溶的M6C、MC则可细化晶粒,增加钢的耐磨性。

高速钢的锻造和热处理

2、锻造

高速钢的铸态组织很不均匀。大量不均匀分布的粗大碳化物,将造成强度及韧性的下降。这种缺陷不能用热处理工艺来矫正,必须借助于反复压力热加工,将粗大的共晶碳化物和二次碳化物破碎,并使其均匀分布在基体内。

钨系高速钢的始锻温度为2242~2282℃,终锻温度为922℃左右。

钨钼系高速钢的始锻温度要低一些。

终锻温度太低会引起锻件开裂,而终锻温度太高会造成晶粒不正常长大,出现萘状断口。由于高速钢在空气中冷却即可进行马氏体转变,所以锻造或轧制以后,钢坯应缓慢冷却,以防止产生过高的应力导致开裂。

2、退火

高速钢锻造以后,必须进行球化退火,其目的不仅在于降低钢的硬度,以利切削加工,而且也为以后的淬火作组织上的准备。28-4-2钢退火温度为862℃~882℃,即略超过A2温度。在该温度保温2~3h。这样,奥氏体内溶入的合金元素不多,奥氏体稳定性较小,易于转变为较软的组织。图8-2-7的组织为索氏体加碳化物。

图8-2-7 高速钢球化退火组织

3、淬火

高速钢的优越性只有在正确的淬火及回火之后才能发挥出来。其淬火温度较一般合金工具钢要高得多。

因为温度越高,合金元素溶入奥氏体的数量越多,淬火之后马氏体的合金浓度越高。只有合金含量高的马氏体才具有高的红硬性。图8-2-8显示出了淬火温度对奥氏体内合金元素含量的影响。

图8-2-8 淬火温度与奥氏体内合金元素的含量

高速钢淬火加热温度越高,奥氏体内的合金溶解度也

越高,其中钨元素需要很高的加热温度才能溶解。

由图可知,对高速钢红硬性作用最大的合金元素—W、Mo及V只有在2222℃以上时,其溶解量才急剧增加。温度超过2322℃时,各元素的溶解量虽还有增加,但奥氏体晶粒则急剧长大,甚至在晶界处发生溶化现象。因而,淬火钢的韧性大大下降。所以,在不发生过热的前提下,高速钢的淬火温度越高,其红硬性则越好。

由于高速钢的导热性差,而淬火温度又极高,故常常分两段或三段进行加热。淬火通常在油中进行,或采用分级淬火法。钢的正常淬火组织是碳化物+马氏体+残余奥氏体。图8-2-9为高速钢的正常淬火组织。

图8-2-9 高速钢的正常淬火组织

4、回火

为了消除淬火应力,稳定组织,减少残余奥氏体的数量,达到所需要的性能,高速钢一般需进行三次652℃保温2h的回火处理。高速钢的热处理工艺规范见图8-2-22。图8-2-22示出了回火温度对28-4-2和6-5-4-2高速钢强度硬度和塑性的影响。

图8-2-22高速钢的热处理工艺规范图

左上图,显示了奥氏体中合金元素的溶解温度与淬火加

热温度的关系。右上图,显示了回火温度与高速钢硬度

之间的关系。下图显示了高速钢的整个热处理工艺--①

球化退火工艺②淬火工艺③④⑤三次回火工艺。

图8-2-22 回火温度与28-4-2高速钢的强度、硬度

图中蓝线显示的是回火温度,高速钢在这个温度回火具有

很高的硬度,较好的强度和塑性。

回火温度在522-622℃之间,钢的硬度、强度和塑性均有提高,而在552-572℃时可达到硬度、强度的最大值。在此温度区间,自马氏体中析出弥散的钨及钒的碳化物,使钢的硬度大大提高,这种现象称为二次硬化。

与此同时,当回火温度522~622℃之间时,残余应力松弛,基体中析出了部分碳化物,使残余奥氏体中合金元素及碳含量下降,Ms点升高。这种贫化的残余奥氏体,在回火后的冷却过程中,转变为马氏体,使钢的硬度也有所提高,这种现象称为二次淬火。

正常回火后硬度为HRC63~66,其组织为回火马氏体加碳化物。

图8-2-22 高速钢回火组织

高速钢回火组织是黑色的回火马氏体加白色的碳化物。

5、高速钢的表面强化

为改善刃具的切削效率和提高耐用性,生产上经常对刃具进行表面强化处理。

表面强化主要有化学热处理和表面复层处理两类。前者包括蒸气处理、气体软氮化、离子氮化、氧氮化等。

表面复层处理则使金属表面形成耐磨的碳化钛、氮化钛复层,许多国家已用于生产。

高速钢刃具的热处理缺陷

高速钢热处理时经常出现的主要缺陷有:过热。过烧、变形开裂、硬度不足、脱碳、萘状断口及腐蚀麻点。

过热:

由于淬火温度过高等原因,造成晶粒过大,剩余碳化物数量减少,碳化物出现粘连。拖尾、角状或沿晶界呈网状分布的现象称为过热。

图8-2-23高速钢的过热组织

高速钢过热组织的特征是碳化物沿晶界呈网状分布。

2)过烧:

淬火温度接近钢的熔化温度,晶界熔化,出现莱氏体及黑色组织,称为过烧。过烧的刃具,常常出现严重的变形或皱皮现象,这种缺陷是不可挽救的。

图8-2-24高速钢的过烧组织

高速钢过烧组织的特征是出现呈鱼骨状的莱氏体。

脱碳:

高速钢的脱碳组织如图8-2-25所示。表面脱碳使工具的硬度降低,金相组织中出现有明显的铁素体,在其基体上还有碳化物存在。钢的表层脱碳,使Ms点升高,在淬火时,表层先转变为马氏体,形成一层薄的硬壳,随后心部进行马氏体转变时,体积膨胀,表层受到张应力,易于引起开裂,同时其硬度和耐磨性也降低,从而大大降低刃具寿命。

图8-2-25高速钢的脱碳组织

萘状断口:

萘状断口呈闪光粗粒状,有如萘光,故得名。其金相组织为粗大的晶粒。产生萘状断口的刀具,强度、韧性极低,使用时易崩刃或折断,是一种不可挽救的缺陷。萘断口的形成主要是由于停锻温度过高,而且变形量又在22~25%左右,或由于需返修而进行两次淬火,其间未经退火造成的。如果淬火前不进行充分退火,也容易产生萘状断口。

图8-2-26高速钢的萘状断口

上海阀门定位器厂家

塑料流量计

低温闸阀

微阻缓闭止回阀